We expect asymptotically better algorithms to be, well, asymptotically better. Even if they lose out for small N, they should win for larger N - and we typically expect this "larger N" to not be that large - just big enough so that data doesn't fit in any cache or something like that.
However, in this particular case, the higher-complexity sorting algorithms gets better than the hash algorithm as N gets larger, even up to pretty large values of N. This is the counter-intuitive part. No one is surprised if an O(n log n) algorithm beats an O(n) algorithm for n = 10. But if the O(n log n) algorithm wins for n = 10 000 000, that's quite surprising.