The laser, beamed at a vein, sends energy to the bloodstream, creating heat. Melanoma CTCs absorb more of this energy than normal cells, causing them to heat up quickly and expand.
This thermal expansion produces sound waves, known as the photoacoustic effect, and can be recorded by a small ultrasound transducer placed over the skin near the laser. The recordings indicate when a CTC is passing in the bloodstream.
The same laser can also be used to destroy the CTCs in real time. Heat from the laser causes vapor bubbles to form on the tumor cells. The bubbles expand and collapse, interacting with the cell and mechanically destroying it.
The laser, beamed at a vein, sends energy to the bloodstream, creating heat. Melanoma CTCs absorb more of this energy than normal cells, causing them to heat up quickly and expand.
This thermal expansion produces sound waves, known as the photoacoustic effect, and can be recorded by a small ultrasound transducer placed over the skin near the laser. The recordings indicate when a CTC is passing in the bloodstream.
The same laser can also be used to destroy the CTCs in real time. Heat from the laser causes vapor bubbles to form on the tumor cells. The bubbles expand and collapse, interacting with the cell and mechanically destroying it.